外星植物会是什么颜色的

科幻 2016-07-08

地球上的植物大部分是绿色的,外星植物会是什么颜色的呢?《环球科学》 南希?Y?江(Nancy Y. Kiang)的研究论文回答了这个问题。

外星植物是什么颜色

1 地球植物大多是绿色的

在地球上,光合作用几乎是所有生命的基础:除了深海热液喷口周围以热量和甲烷为生的生物,地面生态系统中的所有生命都得依靠阳光才能生存下去。而在其他行星上,光合作用发生的几率同样很高。光合作用产生的生物标记分为两类:一是生命活动产生的气体及其衍生物,如氧气和臭氧;二是与某种色素相关的表面颜色,就像叶绿素(chlorophyll)与绿色的关系。

即便在地球上,光合生物的颜色也多种多样。一些陆生植物的叶子是红色的,水生海藻和光合细菌更具有彩虹般的缤纷色彩;紫色细菌也不少见,它们不仅吸收阳光中的可见光,还能利用红外线。那么,在地外行星上,植物们的主流色彩是什么?当我们看见它们时,又该如何辨认?这些问题的答案,取决于照射到植物表面的光线类型(而光线类型又取决于恒星类型和行星大气层的组成,因为恒星发出光线后,要穿过行星大气层才能抵达植物表面)。

2 光合作用

对于大多数地球生物,光合作用实在太重要了:植物或微生物吸收阳光,通过光合作用合成有机分子,释放氧气,其他生物必须直接或间接地利用光合作用的产物,才能维持生命活动。植物或微生物究竟是如何捕捉阳光,将太阳能转化为化学能的?

要了解光合作用在其他行星上是怎么发生的,我们首先得弄清楚地球上光合作用的具体机制。在地球表面,阳光的能谱(energy spectrum)会在蓝色和绿色之间达到峰值,这让科学家一直大感困惑:为什么植物会反射绿色光线,浪费掉阳光中最易得到的部分?(物体反射某种颜色的光线,就会呈现某种颜色。)原因就在于,光合作用并不依赖阳光的总能量,而与单个光子含有的能量以及光线中的光子数量有关。

蓝色光子携带的能量比红色光子多,而太阳发出的红色光子数量则要多一些。植物因为单个光子的能量优势而吸收蓝色光子,因为数量优势而吸收红色光子。相对而言,绿色光子在能量和数量上都不占优势,植物就很少吸收它们。

将一个碳原子固定到一个简单的糖分子内,是光合作用的基本过程。这个过程要顺利完成,至少需要8个光子。4个光子会“撕开”两个水分子的4条氢氧键(一个光子撕开一条),释放4个自由电子,生成1个氧分子;同时,这4个光子还得分别匹配至少1个额外光子,以参加下一步反应:生成糖分子。而且,每个光子的能量不能太低。

植物捕获阳光的方式堪称自然界的奇迹。以叶绿素为代表的光合色素宛如一个天线阵,其中每根“天线”都可以捕获某种波长的光子:叶绿素主要吸收红色和蓝色光子,类胡萝卜素(正是这种色素使秋天的树叶呈现鲜艳的红色和黄色)也吸收蓝色光子,但两种色素吸收的蓝色光子并不完全相同。所有光子的能量都会被输送到位于反应中心的特殊叶绿素分子上——在这里,水分子被分解,释放出氧气。

电子并非以光子的形式释放能量,而是利用电反应,将能量传递给另一个色素分子。这个色素分子会进一步降低蓝色光子中的能量,直到高能的蓝色光子被转换为低能状态的红色光子。利用同样的方式,这一系列色素也能将青色、绿色或黄色光子转换成红色光子。流程终端的反应中心只能吸收能量最低的光子,而在地球表面,红色光子是可见光波段中数量最多、能量最低的光子。

但对水生光合生物来说,红色光子的数量不一定是最充足的。水、水中的各种物质和水生生物本身,都有滤光作用,因此光线组成会随水深而变化。在海洋里,生活在不同深度的生物会拥有不同的体色。浅水层生物的色素适合吸收穿过水层的光子,藻类和蓝细菌就可以利用藻胆素(phycobilins),吸收绿光和黄光;不产氧细菌(Anoxygenic bacteria)的细菌叶绿素则可以吸收红外和近红外光——只有这两种光线能穿透厚厚的水层,到达黑暗的水底。

正如水生生物适应水的滤光作用一样,陆生生物也适应了大气的滤光作用。在地球大气层顶端,黄色光子(波长为560~590纳米)的数量最多。随着海拔降低,波长较长的光子逐渐减少,短波长光子更是急剧减少。阳光透过上层大气时,水蒸气吸收波长大于700纳米的红外线,氧分子吸收波长为687和761纳米的光线(即氧气的吸收谱线)。在平流层,臭氧(O3)会吸收大量的紫外线以及少量可见光。

在很大程度上,植物的吸收光谱由氧气决定,而这些氧气又是植物释放出来的。最早的光合生物在地球上出现时,大气中氧气浓度极低,因此这些生物用于捕捉阳光的色素,必然不同于叶绿素(如果是叶绿素,植物光合作用就会释放大量氧气)。随着时间流逝,光合作用改变了大气组成,叶绿素也就成为了植物的最佳选择。

3 恒星决定生命形式

在很大程度上,恒星的质量、温度决定着行星表面的环境状态,而环境状态又决定了生命能否出现、以什么样的形式出现。

天文学家依据颜色对恒星进行分类,而颜色又与恒星的温度、体积和寿命有关。只有寿命足够长的恒星,才能孕育出复杂生命。满足这一条件的恒星,按照温度的高低,被天文学家分为F、G、K和M型(其中F型恒星温度最高,M型最低)。我们的太阳属于G型恒星;质量更大的F型恒星更亮更蓝,它们的能量将在20亿年内耗尽;K型和M型恒星质量较小,较红较暗,但寿命更长。

根据恒星的年龄和类型,考虑以下4种情况:

厌氧海洋生物。恒星可以是任何类型,但都处于幼年期。生物不一定会产生氧气;大气的主要成分可能是甲烷等气体。

需氧海洋生物。恒星可以是任何类型,但都处于老年期。它已度过漫长岁月,产氧光合生物已进化出来,大气中的氧气开始积累。

需氧陆生生物。恒星处于成熟期,类型不限。植物广泛分布在行星上,地球正处于这一时期。

厌氧陆生生物。恒星属于M型,已进入宁静期,紫外线辐射忽略不计。植物覆盖行星表面,却可能不产生氧气。

对于上述4种情况,光合作用的生物标记显然是不同的。从地球卫星图像来看,海洋生物的分布太稀疏,望远镜很难发现,因此其他行星上的海洋生物不会产生明显的色素型生物标记,只能通过影响大气组成来暗示它们的存在。鉴于此,研究外星植物颜色的科学家们要把主要精力集中在陆地上,比如在F、G和K型恒星周围的行星表面寻找产氧光合生物,或在M型恒星周围的行星上寻找产氧或厌氧光合生物。

外星植物想象图

4 外星植物的颜色

不同的恒星,甚至不同年龄阶段的同一颗恒星,发出的光线也会有所不同。吸收不同光线的光合生物,将会拥有不同的光合色素,进而呈现出不同的颜色。

除了特殊情况,任何行星上的光合色素都会遵从相同的规律:倾向于吸收数量最多、在可利用范围内的波长最短(携带的能量最多)或波长最长的光子。为了弄清楚恒星类型如何决定植物的颜色,科学家们开始收集恒星、行星以及生物学等多方面的证据。

我们发现,在F型恒星周围,行星接收到的光子通常是蓝色的,尤其以波长为451纳米的光子最多;在K型恒星周围,到达行星的光子一般为红色,波长的峰值位于667纳米处,这与地球上的情况类似。臭氧的存在会让F型恒星的光线更蓝,K型恒星的光线更红。与地球的情况类似,光合作用将吸收的光线也集中在可见光区。

因此,在F和K型恒星周围的行星上,植物的颜色可能与地球植物相似,但也有一些细微的差别。F型恒星发出的高能量蓝色光线太强烈,以至于植物可能需要利用类似花青素的筛选色素来反射光子,从而使植物呈蓝色;又或者,植物只需要蓝色光子,完全“忽略”从红到绿这部分光线——这样一来,反射光的光谱就会的蓝色端突然截止,容易被望远镜观测到。

M型恒星的温度范围较广,周围行星上的植物可能具有各种颜色。围绕宁静期M型恒星旋转的行星能接收到的能量,仅相当于地球从太阳获得的能量的一半。尽管这已比地球喜阴植物的最低能量需求多了60倍,对于维持生命体的生存已经足够,但是大多数光子却处于近红外区。在这种情况下,植物也许会进化出多种光合色素,尽可能捕捉更多的可见及红外光。如此一来,这些植物就几乎不会反射光线,看上去可能是黑色的。

5 寻找另一种“叶绿素”

叶绿素是地球植物独有的标记,是卫星能观测到植物和海洋浮游生物的原因。要找到外星植物,科学家首先要做的,就是在其他行星上找到另一种“叶绿素”。

地球生物的“经历”暗示,在F、G和K型恒星周围的行星上,早期海洋光合生物可以从缺氧环境中生存下来,并进化出产氧光合生物,最终导致陆生植物的出现。M型恒星的情况则比较复杂。水下9米是早期光合生物的最佳生存点:在这个位置,紫外线的强度不能对光合生物造成威胁,而穿过水层的其他光线,则能为生命活动提供足够的能量。虽然我们可能无法通过望远镜观测到这些“生命先驱”,但它们却可为行星表面生命的出现打下基础。在M型恒星周围的行星上,能吸收多种光线的植物,也许能长得和地球植物一样繁茂。

如果一台太空望远镜在某行星的反射光谱上监测到一条暗带,而这条暗带对应的光线类型恰恰与科学家的预测相符合,那么在电脑屏幕上观察到这条暗带的人,便可能成为发现外星生物的第一人。不过,我们首先要排除某些干扰因素,比如矿物质是否也会产生同样的生物标记等。如今,对于某些行星,我们已经能鉴定出一些可能代表植物生命活动的颜色,甚至可以预言这些行星上存在着绿色、黄色或橘红色的植物,但目前很难做出更加准确的预言(即外星植物到底是哪种颜色)。在地球上,我们可以很确切的说,叶绿素是植物独有的标记,这是卫星能观测到植物和海洋浮游生物的原因。因此,要找到外星植物,我们首先要做的,就是在其他行星上找到另一种“叶绿素”。

Tags列表

tags

推荐图文

Recommend